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Outline 

Å Benchmark Studies with NIMROD, JOREK 
 
 
 

 
Å ITER 2D VDE Studies with halo region 

 
 
 

 
Å ITER 3D VDE Studies (preliminary) 
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Outline 

Å Benchmark Studies with NIMROD, JOREK 
 
 
 

 
Å ITER 2D VDE Studies with halo region 

 
 
 

 
Å ITER 3D VDE Studies (preliminary) 
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Benchmark Geometry 

ÅStart with NSTX equilibrium 
plasma from a geqdsk 
 

ÅReplace NSTX vacuum vessel 
with rectangular vessel that 
all codes can handle 
 

ÅShown on the left is 
unstructured mesh used in 
M3D-C1 
 

ÅM3D-C1 has 3-regions in 
which different equations are 
solved: 
Å Plasma Region (MHD) 
ÅWall Region (E = h J) 
Å Vacuum Region (J=0) 



Linear 2D Benchmark M3D-C1, NIMROD & JOREK 
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Growth rate as a function of wall 
resistivity for M3D-C1 and 
NIMROD.  Results agree to 11%.  
(better at low wall resistivity) 

Growth rate as a function of 
wall resistivity for M3D-C1 and 
JOREK-starwall  



Nonlinear 2D Benchmark M3D-C1 & JOREK (1) 
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(a)Flux contours when plasma first touches wall (M3D-C1) 
 

(b)Flux contours near end of M3D-C1 VDE simulation. 
 

(c) Time traces of Thermal Energy in both M3D-C1 and JOREK 
      (note TQ is induced by sudden increase in thermal conductivity (k̂) 



Nonlinear Benchmark M3D-C1 & JOREK (2) 
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(a) Z-position of magnetic axis 
 

(b)R-position of magnetic axis 
 

(c) Toroidal current within vessel 

(d) Toroidal current within LCFS 
 
(e) Net toroidal wall current 

 
(f) Halo current density vs wall position 

when Zaxis=-1.23 m 



9 

Outline 

Å Benchmark Studies with NIMROD, JOREK 
 
 
 

 
Å ITER 2D VDE Studies with halo region 

 
 
 

 
Å ITER 3D VDE Studies (preliminary) 
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2D nonlinear ITER VDE simulation 

Based on standard 5.3 T / 15 MA ITER scenario 

 

Used realistic parameters for wall resistivity, plasma 
resistivity, plasma mass   (no scaling:  250,000 tA!!) 
 

2D benchmark with CarMaONL in progress 
Comparison of 2D evolution & wall currents/forces  
ƴ with ITER first wall as resistive wall 
ƴ with first wall as boundary & vessel wall as resistive wall 
 

Coupling M3D-C1 & CARIDDI (3D conducting structures) 
ƴ 2D M3D-C1 simulations (in progress) 
ƴ 3D M3D-C1 simulations (planned) 

I. Krebs 
C. Clauser 
F. Villone /p/m3dc1/nferraro/data/test/mesh/iter_mesh 



Poloidal unstructured mesh used in ITER calculation 

11 Full Mesh Close-up of Plasma Region 



ÅSimulation with constant loop 
voltage applied at t=0 & no plasma 
 
ÅWall resistivity adjusted to give 

correct L/R time 

L/R time from simulation without plasma 
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Simulation time:  1,100,000 tA ITER-NP5 
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Equilibrium (t=0ms) Wall contact (t=37 ms) TQ    (t=63 ms) Max Force  (t=65 ms)  

2D nonlinear ITER VDE simulation with single wall 

Poloidal Magnetic Flux 
Run03: slice 0,10,13,16) 

ά{ǘŀƴŘŀǊŘ .ŀǎŜƭƛƴŜ /ŀǎŜέ 



To initiate Thermal Quench (TQ) we suddenly increase k̂ to a large value 
Å .025, .05, 0.1, 0.15    (dimensionless internal units) 
Å Larger values lead to lower post-TQ temperatures Č faster CQ 
Å Changing k in this way has only small effect on open-field-line temperature 

Dependence of post-TQ T_e on Thermal Conductivity (k)  
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Effect of varying k on plasma motion & forces  

ÅSlower upward motion and larger vertical forces for small k (High Te) 
ÅOnly small dependence of maximum halo current magnitude on k 
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Dependence of post-TQ Te on k profile 

ÅCompare k constant, increasing, or decreasing in radius 
Åk decreasing in radius leads to largest Te on open field lines Č halo current 
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Effect of k profile on plasma motion & forces  

Å k decreasing with radius leads to slower drift, larger halo current 
Å Total vertical force largely unaffected 
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Dependence of post-TQ Te on Te boundary value 

ÅCompared boundary values of .1 eV,  3 eV, and 10 eV 
ÅNote:  3 eV case also had k decreasing with radius 
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Effect of Te BC on plasma motion & forces  

ÅCase with 10 eV BC and flat k also leads to slower growth and more halo current 
ÅRaising edge Te BC and has similar effect as k decreasing with radius 
ÅTe BC has little effect on net vertical force 
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